B. Math. (Hons.) 2nd year First Midsemestral Examination Algebra III 9th September 2019 Instructor — B. Sury Total Marks 60

Q 1. Let R be a finite ring. Prove the following:

(a) There exists an infinite sequence $n_1 < n_2 < \cdots$ such that $a^{n_i} = a^{n_j}$ for all i, j and all $a \in R$.

(b) In addition, if R is also commutative with unity, then every prime ideal is maximal.

OR

Let $n \geq 3$ and let R be the ring of $n \times n$ strictly lower triangular matrices with integer entries.

(a) Find with proof an example of a proper, non-zero left ideal of R.

(b) Find the smallest positive integer N such that $r^N = 0$ for all $r \in R$.

Q 2. Let R be the ring of real-valued continuous functions on [0, 1].

(a) Prove that the map $f \mapsto \int_0^1 f(x) dx$ from R to \mathbb{R} is not a ring homomorphism.

(b) Prove that the set $I = \{f \in R : f(1/4) = 0 = f(1/2)\}$ is an ideal. Is it a prime ideal? Why?

OR

Let R be a ring in which for each nonzero element a, one has a unique corresponding element a^* such that $aa^*a = a$. Prove that R must have a unity, and must be a division ring.

Q 3. In the Gaussian ring $R = \mathbb{Z}[i]$, prove that the ideal I = (1 + 2i), J = (1 - 2i) are comaximal. Further, show that the quotient ring $\mathbb{Z}[i]/5\mathbb{Z}[i]$ is isomorphic to $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$.

OR

For a given non-empty set X, consider the power set P(X) as a ring under the operations $A + B := (A \setminus B) \cup (B \setminus A)$, $A \cdot B := A \cap B$. Prove that for any proper subset Y of X, the ring P(Y) is an ideal of P(X) and that the quotient ring P(X)/P(Y) is isomorphic to the ring $P(X \setminus Y)$.

Q 4. Let *R* be a ring with unity. Suppose *e* is an idempotent in *R* that is in the center. Prove that Re, R(1 - e) are two-sided ideals of *R* and $R = Re \oplus R(1 - e)$. Further, show that Re, R(1 - e) are rings with unity. Deduce that any finite Boolean ring is isomorphic to a finite product $R \cong \mathbb{Z}/2\mathbb{Z} \times \cdots \times \mathbb{Z}/2\mathbb{Z}$.

OR

Consider the ring $R = \mathbb{Z}_9[[X]]$ of formal power series. Prove:

(a) it has uncountably many non-units;

(ii) it has only finitely many nilpotent elements.

Q 5. Let $R = \{p/q \in \mathbb{Q} : (30p,q) = 1\}.$

(a) Find all the maximal ideals of R.

(b) Find a multiplicative subset of \mathbb{Z} such that $R = S^{-1}\mathbb{Z}$.

OR

Let R be a commutative ring with unity.

(a) Find the largest multiplicative subset S of R for which the ring homomorphism $r \mapsto [r/1]$ from R to $S^{-1}R$ is injective.

(b) If $S^{-1}R$ denotes the localization of R at a minimal prime ideal P (that is, P = R - S is a prime ideal that does not properly contain any prime ideals of R), find all the prime ideals ideal Q of $S^{-1}R$.

Q 6. Let R be a commutative ring with unity.

(a) If P is a prime ideal containing the intersection of ideals I_1, \dots, I_n , prove that P contains some I_i .

(b) If I is an ideal contained in the union of prime ideals P_1, \dots, P_m , prove that I is contained in some P_j .

OR

Let R be an integral domain. Show that $R = \bigcap_M R_M$ where R_M is the localization of R at M, the intersection is taken in the quotient field of R and is over all maximal ideals of R.

Hint. In the quotient field of R, write any element of the intersection as $x = a_M/b_M$ with $b_M \notin M$ for each maximal ideal M. Show that b_M 's generate the unit ideal.